• Advanced Recloser Controller
  • Advanced Recloser Controller
Advanced Recloser Controller
discuss personally
Model
RWK-651HBV
Basic info
Brand RW Energy
Model NO. Advanced Recloser Controller
Rated voltage 230V ±20%
Rated frequency 50/60Hz
Electric energy consumption ≤5W
Version V2.3.0-FA
Series RWK-65
Product Detail

Description

RWK-65 is an intelligent medium Voltage controller used in overhead line grid monitoring for the purpose of overhead line protection. It can be equipped with CW(VB) type vacuum circuit breaker to achieve automatic monitoring, fault analysis and store event records.

This unit offers safe line switching of faults on the power grid and provides automatic power recovery. RWK-65 series is suitable for up to 35kV outdoor switchgear include: vacuum circuit breakers, oil circuit breakers and gas circuit breakers. RWK-65 intelligent controller is equipped with line protection, control, measurement and monitoring of Voltage and current signals integrated automation and control devices outdoors.

RWK is a automatic management unit for single way/multi ways/ring network/two power sourcing, provided with all Voltage and current signals and all functions. RWK-65 column switch intelligent controller supports: Wireless (GSM/GPRS/CDMA), Ethernet mode, WIFI, optical fiber, power line carrier, RS232/485, RJ45 and other forms of communication, and can access other station premises equipment (such as TTU, FTU, DTU, etc.).

Main function introduction

1. Local Feeder Automation:

1) Adaptive comprehensive type, Adaptive comprehensive feeder automation is achieved through the "voltage loss opening, power delay closing" method, combined with short circuit/ground fault detection technology and fault path priority processing control strategy, in conjunction with the secondary closing of substation outgoing switches, to achieve fault localization and isolation adaptation of multi branch and multi connection distribution network structures.   The first closing isolates the fault section, and the second closing restores power supply to no fault sections.

2) Voltage time type, The "voltage time type" feeder automation is achieved by combining the working characteristics of the switch "no voltage opening, power delay closing" with the secondary closing of the substation outgoing switch.  The first closing isolates the fault section, and the secondary closing restores the power supply to the no fault section.  

3) Voltage current time type, The voltage current time type adds discrimination for fault current and grounding current on the basis of the voltage time type, following the basic logic of closing within the X time limit of power on, detecting residual voltage lockout within the Y time limit, losing voltage within the Y time limit after closing, and detecting fault current lockout and opening.   At the same time, it has the logic of locking and opening without detecting fault current within the Y time limit after closing, thereby accelerating the process of fault isolation. If the switch adopts a spring operated mechanism, it can be quickly isolated from instantaneous faults by adding a power loss delayed opening (in conjunction with the fast reclosing time of the substation outgoing switch).

2. Protection relay functions:

1) 79 Auto Reclose (Reclose) ,

2) 50P Instantaneous/Definite-Time Overcurrent (P.OC) ,

3) 51P Phase Time-Overcurrent(P.Fast curve/P.Delay curve),

4) 50/67P Directional Phase Overcurrent (P.OC-Direction mode (2-Forward /3-Reverse)),

5) 51/67P Directional Phase Time-Overcurrent (P.Fast curve/P.Delay curve-Direction mode (2-Forward/3-Reverse)),

6) 50G/N Ground Instantaneous/Definite-Time Overcurrent (G.OC),

7) 51G/N Ground Time-Overcurrent (G.Fast curve/G.Delay curve),

8) 50/67G/N Directional Ground Overcurrent (G.OC- Direction mode (2-Forward/3-Reverse)) ,

9) 51/67G/P Directional Ground Time-Overcurrent (P.Fast curve/P.Delay curve-Direction  mode (2-Forward/3-Reverse)),

10) 50SEF Sensitive Earth Fault (SEF), 

11) 50/67G/N Directional Sensitive Earth Fault (SEF-Direction mode (2-Forward/ 3-Reverse)) ,

12) 59/27TN Earth Fault Protection With 3RD Harmonics (SEF-Harmonic inhibit enabled) ,

13)  51C   Cold Load,

14) TRSOTF Switch-Onto-Fault (SOTF) ,

15) 81 Frequency protection ,

16) 46 Negative- Sequence Overcurrent (Nega.Seq.OC),

17) 27 Under Voltage (L.Under volt),

18) 59 Over Voltage (L.Over volt),

19) 59N Zero-Sequence Over Voltage (N.Over volt),

20) 25N Synchronism-Check,

21) 25/79 Synchronism-Check/Auto Reclose,

22) 60 Voltage unbalance,

23) 32 Power direction, 

24) Inrush,

25) Loss of phase, 

26) Live load block, 

27) High gas, 

28) High temperature,

29) hotline protection.

3. Supervision functions:

1) 74T/CCS Trip & Close Circuit Supervision,

2) 60VTS.   VT Supervision.

4. Control functions: 

1) 86    Lockout, 

2) circuit-breaker control.

5. Monitoring Functions: 

1) Primary/Secondary Phases and Earth Currents,

2) Phases Current with 2nd Harmonics and Earth Current With 3RD Harmonics, 

3) Direction, Primary/Secondary Line and Phase Voltages,

4) Apparent Power and Power Factor,

5) Real and Reactive Power, 

6) Energy and History Energy,

7) Max Demand and Month Max Demand, 

8) Positive Phase Sequence Voltage,

9) Negative Phase Sequence Voltage & Current,

10) Zero Phase Sequence Voltage,

11) Frequency, Binary Input/Output status,

12) Trip circuit healthy/failure,

13) Time and date,

14) Trip, alarm,

15) signal records, Counters,

16) Wear, Outage.

6. Communication functions:

a. Communication interface: RS485X1,RJ45X1

b. Communication protocol: IEC60870-5-101; IEC60870-5-104; DNP3.0;  Modbus-RTU

c. PC software: RWK381HB-V2.1.3,The address of the information body can be edited and queried by PC software,

d. SCADA system: SCADA systems that support the four protocols shown in "b.”.

7. Data Storage functions:

1) Event Records,

2) Fault Records,

3) Measurands.

8. remote signaling remote measuring, remote controlling function can be customized address.

Technology parameters

paramete.png

Device structure

RWK-65尺寸图-Model.png

控制器的应用方案.png


About customization

The following optional functions are available: Power supply rated at 110V/60Hz,Two three-phase voltage sensors, cabinet heating defrosting device, battery upgrade to lithium battery or other storage equipment, GPRS communication module,1~2 signal indicators,1~4 protection pressure plates, the second voltage transformer, custom aviation socket signal definition.

For detailed customization, please contact the salesman.

Q: What is a recloser?

A: The reclosing device is a device that can automatically detect the fault current, and automatically cut off the circuit when the fault occurs, and then perform multiple reclosing operations.

Q: What is the function of the recloser?

A: It is mainly used in the distribution network. When there is a temporary fault in the line (such as a branch touching the line for a short time), the reclosing device restores power supply by reclosing operation, which greatly reduces the outage time and scope and improves power supply reliability.

Q: How does the recloser determine the type of failure?

A: It monitors characteristics such as the magnitude and duration of fault currents. If the fault is permanent, after a preset number of reclosing, the reclosing device will be locked to avoid further damage to the device.

Q: What are the application scenarios of reclosers?

A: It is widely used in the urban distribution network and rural power supply network, which can effectively cope with various possible line failures and ensure the stable supply of power.

Know your supplier
RW Energy
Zhejiang Rockwell Energy Technology Co., Ltd. is an international enterprise specializing in the research, development and manufacturing of recloser controllers, power quality management, power monitoring systems and other high-end power equipment. In today's critical period of global energy transition and power system upgrading, the company has gathered a group of top talents in the fields of power engineering, automation control, software development, etc., who carry the enthusiasm and persistence for the power business, and are committed to overcoming the complex problems in the power system, and promoting the intelligent development of the power industry with innovative technology. Mission: To make global electricity smarter, more reliable and more efficient with innovative technology. Vision: To be the leader in global power intelligence.
Main Categories
High voltage/New energy/Tester
Business Type
Design/Manufacture/Sales
Highest Annual Export (USD)
$100000000
Professional Experience
12 years
Workplace
30000m²
占位
占位
Documents
Public.
RWK-65 Automatic Recloser controller
Manual English
Consulting
Related Products
Related Knowledges
The design of the three-purpose grounding transformer
The design of the three-purpose grounding transformer
Underground Power Cable Transmission LinesDirect - buried power cable lines have large ground - distributed capacitance, causing high single - phase - to - ground short - circuit capacitive current. For 10 kV lines, if this current exceeds 10 A, arcs hardly self - extinguish, risking arc overvoltage and endangering line equipment. Arc extinction is thus necessary. With a Dyn - connected main transformer, an arc - suppression coil on the secondary neutral point suffices. For Yd - connected ones,
Dyson
06/12/2025
Failure Analysis and Design Optimization of Conventional Grounding Transformers
Failure Analysis and Design Optimization of Conventional Grounding Transformers
I. Core Cause of Damage: Electrodynamic Impact (Complying with GB/T 1094.5 / IEC 60076-5)The direct cause of high-voltage winding end collapse is the instantaneous electrodynamic impact induced by short-circuit current. When a single-phase grounding fault occurs in the system (such as lightning overvoltage, insulation breakdown, etc.), the grounding transformer, as the fault current path, withstands high-amplitude and steep-rise-rate short-circuit currents. According to Ampère's force law
Felix Spark
06/12/2025
Analysis of Grounding Transformer Operational Behavior Under System Single-Phase-to-Ground Fault Conditions
Analysis of Grounding Transformer Operational Behavior Under System Single-Phase-to-Ground Fault Conditions
1 Theoretical AnalysisIn distribution networks, grounding transformers serve two key roles: powering low - voltage loads and connecting arc - suppression coils at neutrals for grounding protection. Grounding faults, the most common distribution network fault, heavily impact transformers’ operating characteristics, causing sharp changes in electromagnetic parameters and status.To study transformers’ dynamic behaviors under single - phase grounding faults, build this model: Assume a tr
Felix Spark
06/12/2025
Design Calculations for Neutral Grounding Schemes and Grounding Transformer Sizing in Utility-Scale Solar PV Plants
Design Calculations for Neutral Grounding Schemes and Grounding Transformer Sizing in Utility-Scale Solar PV Plants
1 Classification of Neutral Grounding Methods for Solar Photovoltaic Power StationsInfluenced by differences in voltage levels and grid structures across regions, the neutral grounding methods of power systems are mainly categorized into non-effective grounding and effective grounding. Non-effective grounding includes neutral grounding via arc suppression coils and neutral ungrounded systems, while effective grounding comprises neutral solid grounding and neutral grounding via resistors. The sel
Dyson
06/12/2025
Zero-Sequence Impedance Characterization of Dry-Type Grounding Transformer with ZN Connection
Zero-Sequence Impedance Characterization of Dry-Type Grounding Transformer with ZN Connection
In a neutral-insulated three-phase power system, an earthing transformer provides an artificial neutral point, which can be solidly earthed or earthed via reactors/arc suppression coils. The ZNyn11 connection is typical, where zero-sequence magnetomotive forces in the inner/outer half-windings of the same core column cancel out, balancing fault currents in series windings and minimizing zero-sequence leakage flux/impedance.Zero-sequence impedance is critical: it determines fault current magnitud
Dyson
06/12/2025
Case Analysis on Maloperation of Grounding Transformer Overcurrent Protection Relay
Case Analysis on Maloperation of Grounding Transformer Overcurrent Protection Relay
The neutral grounding mode refers to the connection between the power system neutral point and ground. In China's 35 kV and below systems, common methods include ungrounded neutral, arc-suppression coil grounding, and small-resistance grounding. The ungrounded mode is widely used as it allows short-term operation during single-phase grounding faults, while small-resistance grounding has become mainstream for its fast fault removal and overvoltage limitation. Many substations install grounding tr
Felix Spark
06/12/2025
×
Inquiry
Download
Experts Electrical is dedicated to serving the personnel in the global power industry.
Join Experts Electrical, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!
商品视频播放