What are the key differences between oil-filled and dry-type power transformers in high-voltage applications ?

Encyclopedia
02/19/2025

Insulating medium

  • Oil - filled type: It uses insulating oil (such as mineral oil, silicone oil) as the main insulating medium. The iron core and coils are immersed in the oil. The insulating property of the oil is utilized to isolate conductors with different potentials, preventing short - circuits and discharges.

  • Dry - type: It adopts air or solid insulating materials, such as epoxy resin, as the insulating medium. Materials like epoxy resin are wrapped around the coils, serving as insulation and mechanical protection.

Cooling method

  • Oil - filled type: It mainly relies on the circulation of insulating oil for heat dissipation. When the transformer is operating, the generated heat is transferred to the insulating oil. The oil dissipates the heat to the external environment through natural convection or with the help of cooling equipment (such as radiators, cooling fans, etc.).

  • Dry - type: It usually uses natural ventilation or forced air - cooling for heat dissipation. In the case of natural ventilation, heat is carried away by the natural convection of air; for forced air - cooling, fans are installed to accelerate the air flow and improve the heat - dissipation efficiency.

Structural design

  • Oil - filled type: It has a sealed oil tank to accommodate the insulating oil, iron core, coils and other components. There are usually auxiliary devices such as radiators, conservators, and gas relays outside to ensure the normal operation of the insulating oil and protect the transformer.

  • Dry - type: The structure is relatively simple. Generally, there is no oil tank and complex oil - circulation system. The iron core and coils are directly exposed to the air or encapsulated by solid insulating materials like epoxy resin. The iron core and coils can be directly seen from the appearance.

Voltage and capacity ratings

  • Oil - filled type: It can meet the requirements of various voltage levels and large capacities. From low - voltage to extra - high - voltage (500kV and above), the capacity can range from several hundred kVA to several hundred MVA. It is widely used in high - voltage and large - capacity power transmission and distribution.

  • Dry - type: Generally, it is suitable for medium - low voltage levels (10kV - 35kV) and medium - small capacities (usually less than 30MVA). In higher - voltage and larger - capacity scenarios, its application is limited due to heat - dissipation and insulation problems.

Maintenance requirements

  • Oil - filled type: Maintenance work is more complex and frequent. It is necessary to regularly check the quality of the insulating oil, including the electrical characteristics of the oil, moisture content, impurity content, etc., and filter or replace the oil if necessary. It is also necessary to monitor the oil level and check the cooling system.

  • Dry - type: Maintenance is relatively simple. It mainly involves regularly cleaning the outside of the transformer and the ventilation equipment, checking whether the insulating materials have cracks, aging, etc., and conducting insulation resistance tests.

Safety and environmental friendliness

  • Oil - filled type: There are risks of insulating oil leakage and fire. If the insulating oil is not properly disposed of, it may pollute the environment, and the oil may contain harmful substances.

  • Dry - type: Since it does not use insulating oil, there is no risk of oil leakage and no oil - related fire. It has advantages in fire - prevention and explosion - prevention, and is more environmentally friendly.

 Cost

  • Oil - filled type: The manufacturing cost is mainly concentrated on the insulating oil, metal shell and vacuum treatment process. The initial cost is relatively higher than that of dry - type transformers, but it has a high cost - performance ratio in high - power and high - voltage applications.

  • Dry - type: Due to the absence of insulating oil, the material cost is relatively low. However, the use of epoxy resin and high - efficiency cooling systems will increase the cost, especially in large - capacity application scenarios.

Application scenarios

  • Oil - filled type: It is mostly used outdoors, in large industrial enterprises, substations and transmission lines, and is suitable for high - voltage and long - distance power transmission scenarios.

  • Dry - type: It is widely used in places that require high safety and low noise, such as office buildings, shopping malls, hospitals, etc., and is also suitable for areas with high environmental requirements.

Encyclopedia

The Electricity Encyclopedia is dedicated to accelerating the dissemination and application of electricity knowledge and adding impetus to the development and innovation of the electricity industry.

What are the reasons for low insulation at the low-voltage side of a dry-type transformer?
What are the reasons for low insulation at the low-voltage side of a dry-type transformer?
Hi everyone, I’m Felix, and I’ve been working in electrical equipment fault repair for 15 years.Over these years, I’ve traveled across factories, substations, and distribution rooms all over the country, troubleshooting and repairing all kinds of electrical equipment. Dry-type transformers are among the most common devices we deal with.Today, a friend asked me:“What does it mean when the low-voltage side of a dry-type transformer has low insulation resistance?”Great
Felix Spark
07/01/2025
What tests are required for dry-type transformers?
What tests are required for dry-type transformers?
1 Pre - commissioning InspectionAs a front - line tester, before formally commissioning a dry - type transformer, I need to carry out a comprehensive and systematic inspection. First, I conduct a visual inspection of the transformer body and its accessories, carefully checking for mechanical damage or deformation. Then, I check whether the leads of the high - and low - voltage windings are firmly connected and whether the bolt tightening torque meets the standard requirements (usually 40 - 60N&m
Oliver Watts
07/01/2025
What aspects need attention during the installation of dry-type transformers?
What aspects need attention during the installation of dry-type transformers?
1 Pre - installation PreparationAs a front - line installer, I know very well that the preparation work before installing a dry - type transformer must be thorough. First, I will carefully review the design drawings and technical documents, and check one by one the technical parameters such as the model specification, rated capacity, and voltage level of the transformer to ensure they are in full compliance with the design requirements. Then, I will conduct an unpacking inspection of the transfo
James
07/01/2025
What are the causes of dry-type transformers burning out during operation?
What are the causes of dry-type transformers burning out during operation?
1 Fault PhenomenonI am engaged in front - line fault maintenance work, and recently encountered problems with dry - type transformers. Dry - type transformers have a simple structure, are convenient for transportation, and easy for maintenance. They are widely used in power distribution places with relatively high environmental protection requirements. Because of their good fire - resistance, they can be installed in load - center areas to reduce voltage loss and power loss.The property manageme
Felix Spark
07/01/2025
Inquiry
Download
Experts Electrical is dedicated to serving the personnel in the global power industry.
Join Experts Electrical, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!