What is the process of generating high voltage from low voltage using capacitors and diodes?

Encyclopedia
09/26/2024

The process of generating high voltage from low voltage using capacitors and diodes usually involves some specific circuit structure, such as a voltage doubling rectifier circuit. Here is the basic process:


Circuit element introduction


Condenser


A capacitor is an electronic component that can store electrical charge. In this process, the capacitor mainly plays the role of storing and releasing charge.


The capacitance of a capacitor determines how much charge it can store. In general, the larger the capacitance value, the more charge can be stored.


Diode


A diode is an electronic component with unidirectional conductivity. In this process, the diode is mainly used to control the direction of the current, so that the charge can flow according to a specific path.


The forward conduction voltage drop of the diode is small, and almost no current is allowed to pass through the reverse cut-off.


Working principle of voltage doubling rectifier circuit


Half wave voltage doubling rectifier


Input low-voltage AC signal, when the AC signal is in the positive half circle, the diode is switched on, charging the capacitor, so that the voltage at both ends of the capacitor is close to the peak of the input voltage.


When the AC signal enters the negative half cycle, the diode is cut off, and the input voltage and the charged voltage on the capacitor are connected in series, acting together on the load, thus obtaining an output voltage on the load that is higher than the peak input voltage.


Full wave voltage doubling rectifier


A full-wave voltage doubling rectifier circuit uses two diodes and two capacitors. Input a low-voltage AC signal, at positive half a cycle, a diode is switched on, charging a capacitor; At negative half a cycle, another diode is switched on, charging the other capacitor.


The voltages on the two capacitors are then connected in series to act on the load, resulting in a higher output voltage on the load.


Key factors in the process


Capacitance selection


The capacitance value of the capacitor needs to be selected according to the frequency of the input voltage, the size of the load current and other factors. If the capacitance value is too small, it may not be able to store enough charge, resulting in unstable output voltage; If the capacitance value is too large, it may increase the cost and volume of the circuit.


Diode parameter


The parameters of the diode's positive on-voltage drop and reverse withstand voltage also need to be selected according to the requirements of the input voltage and output voltage. If the voltage drop of the diode is large, the amplitude of the output voltage will be reduced. If the reverse voltage resistance of the diode is insufficient, it may be broken down, resulting in circuit failure.


Load effect


The size of the load will affect the stability of the output voltage. If the load current is too large, it will cause the capacitor to discharge faster and the output voltage to drop. Therefore, when designing the circuit, it is necessary to select the appropriate capacitor and diode parameters according to the requirements of the load to ensure the stability of the output voltage.


Encyclopedia

The Electricity Encyclopedia is dedicated to accelerating the dissemination and application of electricity knowledge and adding impetus to the development and innovation of the electricity industry.

Generator Synchronization
Generator Synchronization
A stationary generator must never be connected to live busbars, as the induced electromotive force (EMF) is zero at standstill, which would cause a short circuit. The synchronization procedure and the equipment used for checking it are identical whether one alternator is to be connected in parallel with another alternator or an alternator is to be connected to an infinite bus.Synchronisation via Synchronising LampsA set of three synchronizing lamps can be employed to verify the conditions for pa
Edwiin
05/26/2025
Difference between Voltage Source Inverter & Current Source Inverter
Difference between Voltage Source Inverter & Current Source Inverter
The voltage source inverter (VSI) and the current source inverter (CSI) represent two distinct categories of inverters, both designed for converting direct current (DC) to alternating current (AC). Despite their shared purpose, they exhibit notable operational differences and cater to distinct application requirements.Power electronics centers on the study and implementation of various power converters—devices or electronic circuits that transform one form of electrical energy into another
Edwiin
05/22/2025
What is Maximum Demand Indicator?
What is Maximum Demand Indicator?
Definition: The maximum demand indicator is used to measure the maximum amount of power consumed by a consumer within a specific time interval. It is designed to measure base and peak loads, but it cannot measure sudden short - circuit currents or the high starting currents of motors. Its purpose is to record power consumption over specific periods.The maximum demand indicators are categorized into four types:Recording demand indicatorAverage demand indicatorThermal type maximum demand indicator
Edwiin
05/22/2025
What is Automatic Voltage Regulator?
What is Automatic Voltage Regulator?
An automatic voltage regulator is employed to regulate voltage, converting fluctuating voltages into a constant one. Voltage fluctuations mainly stem from variations in the load on the supply system. Such voltage variations can damage the equipment within the power system. These fluctuations can be mitigated by installing voltage - control equipment at various locations, such as near transformers, generators, and feeders. Multiple voltage regulators are often placed throughout the power system t
Edwiin
05/22/2025
Inquiry
Download
Experts Electrical is dedicated to serving the personnel in the global power industry.
Join Experts Electrical, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!