Surge Impedance Loading

Encyclopedia
09/04/2024

SIL Definition


Surge Impedance Loading (SIL) is defined as the power a transmission line delivers to a load that matches the line’s surge impedance.

 


Surge Impedance


Surge Impedance is the balance point where capacitive and inductive reactances of a transmission line cancel each other out.

 


Long transmission lines (> 250 km) inherently possess distributed inductance and capacitance. When activated, the capacitance feeds reactive power into the line, and the inductance absorbs it.

 


Now if we take the balance of the two reactive powers we arrive at the following equation

 


Capacitive VAR = Inductive VAR

 


Where,

V = Phase voltage

I = Line Current

Xc = Capacitive reactance per phase

XL = Inductive reactance per phase

Upon simplifying

 


eec5aa71e277fb8a6a441d95579c8b7c.jpeg

 


Where,

f = Frequency of the system

L = Inductance per unit length of the line

l = Length of the line

Hence we get,

 


ee12cd10bba3bf52fcd36e98dfb23186.jpeg

 


This quantity having the dimensions of resistance is the Surge Impedance. It can be considered as a purely resistive load which when connected at the receiving end of the line, the reactive power generated by capacitive reactance will be completely absorbed by inductive reactance of the line.


It is nothing but the Characteristic Impedance (Zc) of a lossless line.

 


Transmission Line Properties


  • Key properties such as distributed inductance and capacitance are fundamental to understanding transmission line behavior.



  • Key properties such as distributed inductance and capacitance are fundamental to understanding transmission line behavior.



  • Calculations involving the characteristic impedance and load impedance help in understanding how SIL influences power transmission efficiency.

 


Practical Application


SIL is crucial for designing transmission lines to ensure voltage stability and efficient power delivery.

 



Encyclopedia

The Electricity Encyclopedia is dedicated to accelerating the dissemination and application of electricity knowledge and adding impetus to the development and innovation of the electricity industry.

What is Automatic Voltage Regulator?
What is Automatic Voltage Regulator?
An automatic voltage regulator is employed to regulate voltage, converting fluctuating voltages into a constant one. Voltage fluctuations mainly stem from variations in the load on the supply system. Such voltage variations can damage the equipment within the power system. These fluctuations can be mitigated by installing voltage - control equipment at various locations, such as near transformers, generators, and feeders. Multiple voltage regulators are often placed throughout the power system t
Edwiin
05/22/2025
What is Static Voltage Regulator?
What is Static Voltage Regulator?
Types of Static Voltage RegulatorThe static voltage regulator is superior to electromechanical regulators in respect of the accuracy of control, response, reliability and maintenance. The static voltage regulator is mainly classified into two types. They are;Servo Type Voltage RegulatorMagnetic Amplifier RegulatorThe types of static voltage regulator are described below in details;Servo Type Voltage RegulatorThe main feature of the servo type voltage regulator is the use of the amplidyne. The am
Edwiin
05/21/2025
What is Arc Extinction Circuit Breaker?
What is Arc Extinction Circuit Breaker?
When the current-carrying contacts of a circuit breaker separate, an arc forms and persists briefly after contact separation. This arc is hazardous due to the heat energy it generates, which can produce explosive forces.A circuit breaker must extinguish the arc without damaging equipment or endangering personnel. The arc significantly influences the breaker’s performance. Interrupting aDC arcis inherently more challenging than anAC arc. In an AC arc, the current naturally reaches zero duri
Edwiin
05/20/2025
Air Break Circuit Breaker
Air Break Circuit Breaker
In an air break circuit breaker, the arc is initiated and extinguished in substantially static air as the arc moves. These breakers are used for low voltages, generally up to 15 kV, with rupturing capacities of 500 MVA. As an arc-quenching medium, air circuit breakers offer several advantages over oil, including:Elimination of risks and maintenance associated with oil use.Absence of mechanical stress caused by gas pressure and oil movement.Elimination of costs from regular oil replacement due to
Edwiin
05/20/2025
Inquiry
Download
Experts Electrical is dedicated to serving the personnel in the global power industry.
Join Experts Electrical, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!