Backup Protection of Transformer | Over Current and Earth Fault

Electrical4u
03/26/2024

Backup Protection Of Transformers

Over Current and Earth Fault Protection of Transformer

Backup protection of electrical transformer is simple Over Current and Earth Fault protection are applied against external short circuit and excessive over loads. These over current and earth Fault relays may be of Inverse Definite Minimum Time (IDMT) or Definite Time type relays (DMT). Generally IDMT relays are connected to the in-feed side of the transformer.
The over current relays can not distinguish between external short circuit, over load and
internal faults of the transformer. For any of the above fault, backup protection i.e. over current and earth fault protection connected to in-feed side of the transformer will operate.

Backup protection is although generally installed at in feed side of the transformer, but it should trip both the primary and secondary circuit breakers of the transformer.
backup over current earth fault protection of power transformer
Over Current and Earth Fault protection relays may be also provided in load side of the transformer too, but it should not inter trip the primary side circuit breaker like the case of backup protection at in-feed side.

The operation is governed primarily by current and time settings and the characteristic curve of the relay. To permit use of over load capacity of the transformer and co-ordination with other similar relays at about 125 to 150% of full load current of the transformer but below the minimum short circuit current.
Backup
protection of transformer has four elements; three over current relays connected each in each phase and one earth fault relay connected to the common point of three over current relays as shown in the figure. The normal range of current settings available on IDMT over current relays are 50% to 200% and on earth fault relay 20 to 80%.

over current and earth fault protection of power transformer

Another range of setting on earth fault relay is also available and may be selected where the earth fault current is restricted due to insertion of impedance in the neutral grounding. In the case of transformer winding with neutral earthed, unrestricted earth fault protection is obtained by connecting an ordinary earth fault relay across a neutral current transformer.
The unrestricted over current and earth fault relays should have proper time lag to co-ordinate with the protective relays of other circuit to avoid indiscriminate tripping.
unrestricted earth fault protection using Neutral CT

If you’d like to learn more about transformers, you can study our free MCQs on transformers.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Electrical4u

Electrical4U is dedicated to the teaching and sharing of all things related to electrical and electronics engineering.

Classification of Electric Power Distribution Network Systems
Classification of Electric Power Distribution Network Systems
The typical electric power system network is categorized into three main components: generation, transmission, and distribution. Electric power is produced in power plants, which are often located far from load centers. As a result, transmission lines are employed to deliver power over long distances.To minimize transmission losses, high-voltage power is used in transmission lines, and the voltage is reduced at the load center. The distribution system then delivers this power to end-users.Types
Edwiin
06/05/2025
Why is the Ground Wire Always Positioned Above the Overhead Power Lines?
Why is the Ground Wire Always Positioned Above the Overhead Power Lines?
Ground Wire in Overhead Transmission LinesThe ground wire (also called earth wire or OPGW) installed above phase lines in overhead transmission lines acts as a key protective and safety component. It provides lightning protection, ground fault defense, and helps prevent electrical system disruptions.In overhead transmission lines, positioning the ground wire above phase lines serves specific safety and performance purposes. Referred to as a "shield wire" or "static wire," this configuration has
Edwiin
06/04/2025
What is the Power Angle in a Power Transmission Line?
What is the Power Angle in a Power Transmission Line?
The power angle, denoted by δ, is the phase angle difference between two voltage levels in a power transmission line. Specifically, it represents the angular discrepancy between the sending-end voltage phasor and the receiving-end voltage (or between voltages at two bus points). In simpler terms, it quantifies the phase shift between voltage and current waveforms in the transmission line.Also referred to as the torque angle or load angle, this parameter is critical for two key reasons: it
Edwiin
06/04/2025
Permanent Magnet Moving Coil or PMMC Instrument
Permanent Magnet Moving Coil or PMMC Instrument
DefinitionInstruments that utilize a permanent magnet to generate a stationary magnetic field within which a coil moves are known as Permanent Magnet Moving Coil (PMMC) instruments. They operate on the principle that torque is exerted on a moving coil situated in the magnetic field of a permanent magnet. PMMC instruments provide accurate results for direct current (DC) measurements.Construction of PMMC InstrumentThe moving coil and the permanent magnet are the key components of a PMMC instrument
Edwiin
05/30/2025
Inquiry
Download
Experts Electrical is dedicated to serving the personnel in the global power industry.
Join Experts Electrical, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!