What is the method for determining the temperature of a coil?

Encyclopedia
01/10/2025

Methods to Determine Coil Temperature

There are several methods to determine coil temperature, and the choice depends on the application scenario, required accuracy, and available equipment and technology. Below are some commonly used methods to determine coil temperature:

1. Direct Measurement Methods

a. Thermocouples

  • Principle: Thermocouples utilize the thermoelectric effect produced by the contact of two different metal materials to measure temperature.

  • Usage: Install the thermocouple probe near or within the coil. Connect it to a temperature reading device to monitor temperature changes in real-time.

  • Advantages: Fast response time, suitable for high-temperature environments.

  • Disadvantages: Requires physical contact, which may affect normal coil operation; complex installation.

b. Resistance Temperature Detectors (RTDs)

  • Principle: RTDs measure temperature based on the characteristic that the resistance of metals changes with temperature.

  • Usage: Install the RTD sensor near or within the coil and measure its resistance to calculate temperature.

  • Advantages: High accuracy and stability.

  • Disadvantages: Slower response time compared to thermocouples; higher cost.

c. Infrared Thermometers

  • Principle: Infrared thermometers measure surface temperature by detecting the infrared radiation emitted by an object.

  • Usage: Non-contact measurement; simply aim the thermometer at the target area to take a reading.

  • Advantages: Non-contact, suitable for hard-to-reach or moving objects.

  • Disadvantages: Affected by environmental factors such as dust and humidity; relatively lower accuracy compared to direct contact methods.

2. Indirect Measurement Methods

a. Copper Loss Method

Principle: Estimate temperature based on changes in current and resistance within the coil. Copper losses (I²R) increase with temperature because conductor resistance increases with temperature.

Usage:

  • Measure the DC resistance of the coil in a cold state.

  • During operation, measure current and voltage to calculate copper losses.

Use the resistance temperature coefficient (α) formula to calculate temperature changes:

7ee5df8e690a208d2f03a5251653e13c.jpeg

where RT is the resistance during operation, R0 is the resistance in the cold state, α is the resistance temperature coefficient, T is the operating temperature, and T0 is the cold-state temperature.

  • Advantages: Does not require additional sensors, suitable for setups that already have current and voltage measurement devices.

  • Disadvantages: Relies on multiple assumptions, accuracy depends on initial measurements.

b. Thermal Network Model

Principle: Establish a thermal transfer model for the coil and its surrounding environment, considering heat conduction, convection, and radiation, to simulate temperature changes.

Usage:

  • Create a thermal network model of the coil and its cooling system.

  • Input operational parameters (e.g., current, ambient temperature), and use numerical simulation to calculate temperature distribution.

  • Advantages: Can predict temperature changes under complex conditions, suitable for design and optimization phases.

  • Disadvantages: Complex model requiring detailed data and computational resources.

c. Fiber Optic Temperature Sensors

  • Principle: Fiber optic temperature sensors use optical properties (such as Brillouin scattering, Raman scattering) that change with temperature to measure temperature.

  • Usage: Embed or wrap fiber optic sensors around the coil and use optical signal transmission and analysis to obtain temperature information.

  • Advantages: Resistant to electromagnetic interference, suitable for high-voltage and strong magnetic field environments.

  • Disadvantages: Higher cost and more complex technology.

3. Combined Methods

In practical applications, multiple methods are often combined to improve measurement accuracy and reliability. For example, thermocouples or RTDs can be installed at critical locations for direct measurement, while the copper loss method or thermal network models can be used for auxiliary calculations and validation.

Conclusion

Methods to determine coil temperature include both direct and indirect measurement approaches. Direct measurement methods, such as thermocouples, RTDs, and infrared thermometers, are suitable for scenarios requiring real-time monitoring. Indirect measurement methods, including the copper loss method, thermal network models, and fiber optic temperature sensors, are suited for specific applications or design optimization phases. Choosing the appropriate method based on specific needs and conditions ensures the safe operation and performance stability of the coil.

Encyclopedia

The Electricity Encyclopedia is dedicated to accelerating the dissemination and application of electricity knowledge and adding impetus to the development and innovation of the electricity industry.

What is Automatic Voltage Regulator?
What is Automatic Voltage Regulator?
An automatic voltage regulator is employed to regulate voltage, converting fluctuating voltages into a constant one. Voltage fluctuations mainly stem from variations in the load on the supply system. Such voltage variations can damage the equipment within the power system. These fluctuations can be mitigated by installing voltage - control equipment at various locations, such as near transformers, generators, and feeders. Multiple voltage regulators are often placed throughout the power system t
Edwiin
05/22/2025
What is Static Voltage Regulator?
What is Static Voltage Regulator?
Types of Static Voltage RegulatorThe static voltage regulator is superior to electromechanical regulators in respect of the accuracy of control, response, reliability and maintenance. The static voltage regulator is mainly classified into two types. They are;Servo Type Voltage RegulatorMagnetic Amplifier RegulatorThe types of static voltage regulator are described below in details;Servo Type Voltage RegulatorThe main feature of the servo type voltage regulator is the use of the amplidyne. The am
Edwiin
05/21/2025
What is Arc Extinction Circuit Breaker?
What is Arc Extinction Circuit Breaker?
When the current-carrying contacts of a circuit breaker separate, an arc forms and persists briefly after contact separation. This arc is hazardous due to the heat energy it generates, which can produce explosive forces.A circuit breaker must extinguish the arc without damaging equipment or endangering personnel. The arc significantly influences the breaker’s performance. Interrupting aDC arcis inherently more challenging than anAC arc. In an AC arc, the current naturally reaches zero duri
Edwiin
05/20/2025
Air Break Circuit Breaker
Air Break Circuit Breaker
In an air break circuit breaker, the arc is initiated and extinguished in substantially static air as the arc moves. These breakers are used for low voltages, generally up to 15 kV, with rupturing capacities of 500 MVA. As an arc-quenching medium, air circuit breakers offer several advantages over oil, including:Elimination of risks and maintenance associated with oil use.Absence of mechanical stress caused by gas pressure and oil movement.Elimination of costs from regular oil replacement due to
Edwiin
05/20/2025
Inquiry
Download
Experts Electrical is dedicated to serving the personnel in the global power industry.
Join Experts Electrical, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!