Dead Short: What is it? (vs Short Circuit vs Bolted Fault vs Ground Fault)

Electrical4u
03/29/2024

what is a dead short

What is a Dead Short?

A dead short is an electrical circuit that results in current flowing along an unintended path with no resistance or impedance. This results in an excessive current flowing through the circuit, which can damage equipment or cause electrical shocks to those nearby.

A dead short is difficult to track and diagnose as the current builds rapidly and trips the breaker immediately.

It is mainly caused due to direct connection between positive and negative power wires or a direct connection between the positive wire and the ground.

Dead shorts are very dangerous because it causes a high amount of current to flow through the circuit.

Dead Short vs Short Circuit

To understand the difference between a dead short and a short circuit, let’s take an example. Consider a voltage difference between two points is 150 V.

If we measure the voltage between two points in normal conditions, it shows 150 V. But, if the voltage between two points is less than 150 V, it is called a short circuit.

Some voltage drop occurs during the short circuit, and some resistance appears between these two points.

If the measured voltage is 0 V, it is called dead short. It means there is zero resistance of a circuit.

The difference between the normal condition, short-circuit, and dead-short describes in the figure below.

normal condition short circuit condition dead short condition
Normal Condition, Short-circuit Condition, Dead Short Condition

Dead Short vs Bolted Fault

A bolted fault is defined as a fault with zero impedance. It produces extreme fault current in the system.

When all conductors are connected to the ground with a metallic conductor, the fault is known as a bolted fault.

The bolted fault (bolted short) is quite similar to the dead short. As in the dead short also, the resistance is zero.

Dead Short vs Ground Fault

The ground fault occurs in the power system when the hot wire (live wire) accidentally connected with the earth wire or grounded equipment frame.

In this condition, the frame of equipment energies with dangerous voltage. In the ground fault, there is some amount of ground resistance present. And the fault current depends on the ground resistance.

Therefore, the ground fault is different from the dead short.

Example of a Dead Short

To understand the dead short, let’s take an example. Consider a network having three resistors connected in series, as shown in the figure below.

example of dead short

In normal conditions, the current passes through the circuit are I ampere. And the total resistance of a circuit is REQ.

REQ=5+15+20

\[ R_{EQ} = 40 \Omega \]


According to ohm’s law;


\[ V = IR \]


\[ 40 = I (40) \]


\[ I = 1 A \]


Therefore, the current that passes through the circuit is 1 A in normal condition.

If we short battery terminals by a metallic wire or very low resistance (ideally zero resistance), the circuit looks like the figure below.

dead short

As points A and B are shorted with ideally zero resistance, it is known as dead short. And the current that passes through the resisters is zero.

All the current will flow through the shorted terminals. Because the current always follows a low resistance path.

Due to zero resistance, the current passes through terminals A and B is;


\[ V = IR\]


\[ I = \frac{V}{R} \]


\[ I = \frac{40}{0} \]


\[ I = \infy \]

From the calculation, infinite current will flow through the point A and B. But practically, there is some amount of current that will flow. And this current is very high compared to the standard current (1 A).

In a power system network, you can consider a part of a network instead of three resisters. The circuit will look like the figure below.

dead short in network

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Electrical4u

Electrical4U is dedicated to the teaching and sharing of all things related to electrical and electronics engineering.

Classification of Electric Power Distribution Network Systems
Classification of Electric Power Distribution Network Systems
The typical electric power system network is categorized into three main components: generation, transmission, and distribution. Electric power is produced in power plants, which are often located far from load centers. As a result, transmission lines are employed to deliver power over long distances.To minimize transmission losses, high-voltage power is used in transmission lines, and the voltage is reduced at the load center. The distribution system then delivers this power to end-users.Types
Edwiin
06/05/2025
Why is the Ground Wire Always Positioned Above the Overhead Power Lines?
Why is the Ground Wire Always Positioned Above the Overhead Power Lines?
Ground Wire in Overhead Transmission LinesThe ground wire (also called earth wire or OPGW) installed above phase lines in overhead transmission lines acts as a key protective and safety component. It provides lightning protection, ground fault defense, and helps prevent electrical system disruptions.In overhead transmission lines, positioning the ground wire above phase lines serves specific safety and performance purposes. Referred to as a "shield wire" or "static wire," this configuration has
Edwiin
06/04/2025
What is the Power Angle in a Power Transmission Line?
What is the Power Angle in a Power Transmission Line?
The power angle, denoted by δ, is the phase angle difference between two voltage levels in a power transmission line. Specifically, it represents the angular discrepancy between the sending-end voltage phasor and the receiving-end voltage (or between voltages at two bus points). In simpler terms, it quantifies the phase shift between voltage and current waveforms in the transmission line.Also referred to as the torque angle or load angle, this parameter is critical for two key reasons: it
Edwiin
06/04/2025
Permanent Magnet Moving Coil or PMMC Instrument
Permanent Magnet Moving Coil or PMMC Instrument
DefinitionInstruments that utilize a permanent magnet to generate a stationary magnetic field within which a coil moves are known as Permanent Magnet Moving Coil (PMMC) instruments. They operate on the principle that torque is exerted on a moving coil situated in the magnetic field of a permanent magnet. PMMC instruments provide accurate results for direct current (DC) measurements.Construction of PMMC InstrumentThe moving coil and the permanent magnet are the key components of a PMMC instrument
Edwiin
05/30/2025
Inquiry
Download
Experts Electrical is dedicated to serving the personnel in the global power industry.
Join Experts Electrical, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!