Weston Type Frequency Meter

Electrical4u
03/27/2024

What Is Weston Type Frequency Meter

The main principle of working of weston type frequency meter is that “when an current flows through the two coils which are perpendicular to each other, due to these currents some magnetic fields will produce and thus the magnetic needle will deflects towards the stronger magnetic field showing the measurement of frequency on the meter”. Construction of weston frequency is as compared to ferrodynamic type of frequency meter. In order to construct a circuit diagram we need two coils, three inductors and two resistors.

Given below is the circuit diagram for the weston type frequency meter.
weston type frequency meter

Axis of both coils are marked as shown. Scale of the meter is calibrated such that at standard frequency the pointer will take position at 45o. Coil 1 contains a series resistor marked R1 and reactance coil marked as L1, while the coil 2 has a series reactance coil marked as L2 and parallel resistor marked as R2. The indcuctor which is marked as L0 is connected in series with the supply voltage in order to reduce the higher harmonic means here this inductor is working as a filter circuit. Let us look at the working of this meter.

Now when we apply voltage at standard frequency then the pointer will take normal position, if there increase the frequency of the applied voltage then we will see that the pointer will moves towards left marked as higher side as shown in the circuit diagram. Again we reduce the frequency the pointer will start moving towards the right side, if lower the frequency below the normal frequency then it cross the normal position to move towards left side marked lower side as shown in the figure.

Now let us look at the internal working of this meter. Voltage drop across an inductor is directly proportion to frequency of the source voltage, as we increase the frequency of the applied voltage the voltage drop across the inductor L1 increase that means the voltage impressed between the coil 1 is increased hence the current through the coil 1 increase while the current through the coil 2 decreases.
Since the current through the coil 1 increases the magnetic field also increases and the magnetic needle attracts more towards the left side showing the increment in the frequency. Similar action will takes if decrease the frequency but in this the pointer will moves towards the left side.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Electrical4u

Electrical4U is dedicated to the teaching and sharing of all things related to electrical and electronics engineering.

Classification of Electric Power Distribution Network Systems
Classification of Electric Power Distribution Network Systems
The typical electric power system network is categorized into three main components: generation, transmission, and distribution. Electric power is produced in power plants, which are often located far from load centers. As a result, transmission lines are employed to deliver power over long distances.To minimize transmission losses, high-voltage power is used in transmission lines, and the voltage is reduced at the load center. The distribution system then delivers this power to end-users.Types
Edwiin
06/05/2025
Why is the Ground Wire Always Positioned Above the Overhead Power Lines?
Why is the Ground Wire Always Positioned Above the Overhead Power Lines?
Ground Wire in Overhead Transmission LinesThe ground wire (also called earth wire or OPGW) installed above phase lines in overhead transmission lines acts as a key protective and safety component. It provides lightning protection, ground fault defense, and helps prevent electrical system disruptions.In overhead transmission lines, positioning the ground wire above phase lines serves specific safety and performance purposes. Referred to as a "shield wire" or "static wire," this configuration has
Edwiin
06/04/2025
What is the Power Angle in a Power Transmission Line?
What is the Power Angle in a Power Transmission Line?
The power angle, denoted by δ, is the phase angle difference between two voltage levels in a power transmission line. Specifically, it represents the angular discrepancy between the sending-end voltage phasor and the receiving-end voltage (or between voltages at two bus points). In simpler terms, it quantifies the phase shift between voltage and current waveforms in the transmission line.Also referred to as the torque angle or load angle, this parameter is critical for two key reasons: it
Edwiin
06/04/2025
Permanent Magnet Moving Coil or PMMC Instrument
Permanent Magnet Moving Coil or PMMC Instrument
DefinitionInstruments that utilize a permanent magnet to generate a stationary magnetic field within which a coil moves are known as Permanent Magnet Moving Coil (PMMC) instruments. They operate on the principle that torque is exerted on a moving coil situated in the magnetic field of a permanent magnet. PMMC instruments provide accurate results for direct current (DC) measurements.Construction of PMMC InstrumentThe moving coil and the permanent magnet are the key components of a PMMC instrument
Edwiin
05/30/2025
Inquiry
Download
Experts Electrical is dedicated to serving the personnel in the global power industry.
Join Experts Electrical, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!