Electrical Measuring Instruments | Types Accuracy Precision Resolution Speed

Electrical4u
03/27/2024

What Are Electrical Measuring Instruments

Basically there are three types of measuring instruments and they are

  1. Electrical measuring instruments

  2. Mechanical measuring instruments.

  3. Electronic measuring instruments.

Here we are interested in electrical measuring instruments so we will discuss about them in detail. Electrical instruments measure the various electrical quantities like electrical power factor, power, voltage and current etc. All analog electrical instruments use mechanical system for the measurement of various electrical quantities but as we know that the all mechanical system has some inertia therefore electrical instruments have a limited time response.

Now there are various ways of classifying the instruments. On broad scale we can categorize them as:

Absolute Measuring Instruments

These instruments give output in terms of physical constant of the instruments. For example Rayleigh’s current balance and Tangent galvanometer are absolute instruments.

Secondary Measuring Instruments

These instruments are constructed with the help of absolute instruments. Secondary instruments are calibrated by comparison with absolute instruments. These are more frequently used in measurement of the quantities as compared to absolute instruments, as working with absolute instruments is time consuming.

Another way of classifying the electrical measuring instruments depends on the way they produce the result of measurements. On this basis they can be of two types:

Deflection Type Instruments

In these types of instruments, pointer of the electrical measuring instrument deflects to measure the quantity. The value of the quantity can be measured by measuring the net deflection of the pointer from its initial position. In order to understand these types of instruments let us take an example of deflection type permanent magnet moving coil ammeter which is shown below:

Permanent Magnet Moving Coil Instrument

The diagram shown above has two permanent magnets which are called the stationary part of the instrument and the moving part which is between the two permanent magnets that consists of pointer. The deflection of the moving coil is directly proportion to the current. Thus the torque is proportional to the current which is given by the expression Td = K.I, where Td is the deflecting torque.

K is proportionality constant which depends upon the strength of the magnetic field and the number of turns in the coil. The pointer deflects between the two opposite forces produced by the spring and the magnets. And the resulting direction of the pointer is in the direction of the resultant force. The value of current is measured by the deflection angle θ, and the value of K.

Null Type Instruments

In opposite to deflection type of instruments, the null or zero type electrical measuring instruments tend to maintain the position of pointer stationary. They maintain the position of the pointer stationary by producing opposing effect. Thus for the operation of null type instruments following steps are required:

  1. Value of opposite effect should be known in order to calculate the value of unknown quantity.

  2. Detector shows the balance and the unbalance condition accurately.

The detector should also have the means for restoring force.
Let us look at the advantages and disadvantages of deflection and null type of measuring instruments:

  1. Deflection type of instruments is less accurate than the null type of instruments. It is because, in the null deflecting instruments the opposing effect is calibrated with the high degree of accuracy while the calibration of the deflection type instruments depends on the value of instrument constant hence usually not having high degree of accuracy.

  2. Null point type instruments are more sensitive than the Deflection type instruments.

  3. Deflection type instruments are more suitable under dynamic conditions than null type of instruments as the intrinsic responses of the null type instruments are slower than deflection type instruments.

Following are the important three functions of the electrical measuring instruments.

Indicating Function

These instruments provide information regarding the variable quantity under measurement and most of the time this information are provided by the deflection of the pointer. This kind of function is known as the indicating function of the instruments.

Recording Function

These instruments usually use the paper in order to record the output. This type of function is known as the recording function of the instruments.

Controlling Function

This is function is widely used in industrial world. In this topic these instruments controls the processes.
Now there are two characteristics of electrical measuring instruments and measurement systems. They are written below:

Static Characteristics

In these type of characteristics measurement of quantities are either constant or vary slowly with the time. Few main static characteristics are written below:

  1. Accuracy:
    It is desirable quality in measurement. It is defined as the degree of the closeness with which instrument reading approaches the true value of the quantity being measured. Accuracy can be expressed in three ways


    1. Point accuracy

    2. Accuracy as the percentage of scale of range

    3. Accuracy as percentage of true value.

  2. Sensitivity:
    It is also desirable quality in the measurement. It is defined as the ratio of the magnitude response of the output signal to the magnitude response of the input signal.

  3. Reproducibility:
    It is again a desirable quality. It is defined as the degree of the closeness with which a given quantity may be repeatedly measured. High value of reproducibility means low value of drift. Drift are of three types


    1. Zero drift

    2. Span drift

    3. Zonal drift

Dynamic Characteristics

These characteristics are related with the rapidly changing quantities therefore in order to understand these types of characteristics we are required to study the dynamic relations between the input and the output.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Electrical4u

Electrical4U is dedicated to the teaching and sharing of all things related to electrical and electronics engineering.

Classification of Electric Power Distribution Network Systems
Classification of Electric Power Distribution Network Systems
The typical electric power system network is categorized into three main components: generation, transmission, and distribution. Electric power is produced in power plants, which are often located far from load centers. As a result, transmission lines are employed to deliver power over long distances.To minimize transmission losses, high-voltage power is used in transmission lines, and the voltage is reduced at the load center. The distribution system then delivers this power to end-users.Types
Edwiin
06/05/2025
Why is the Ground Wire Always Positioned Above the Overhead Power Lines?
Why is the Ground Wire Always Positioned Above the Overhead Power Lines?
Ground Wire in Overhead Transmission LinesThe ground wire (also called earth wire or OPGW) installed above phase lines in overhead transmission lines acts as a key protective and safety component. It provides lightning protection, ground fault defense, and helps prevent electrical system disruptions.In overhead transmission lines, positioning the ground wire above phase lines serves specific safety and performance purposes. Referred to as a "shield wire" or "static wire," this configuration has
Edwiin
06/04/2025
What is the Power Angle in a Power Transmission Line?
What is the Power Angle in a Power Transmission Line?
The power angle, denoted by δ, is the phase angle difference between two voltage levels in a power transmission line. Specifically, it represents the angular discrepancy between the sending-end voltage phasor and the receiving-end voltage (or between voltages at two bus points). In simpler terms, it quantifies the phase shift between voltage and current waveforms in the transmission line.Also referred to as the torque angle or load angle, this parameter is critical for two key reasons: it
Edwiin
06/04/2025
Permanent Magnet Moving Coil or PMMC Instrument
Permanent Magnet Moving Coil or PMMC Instrument
DefinitionInstruments that utilize a permanent magnet to generate a stationary magnetic field within which a coil moves are known as Permanent Magnet Moving Coil (PMMC) instruments. They operate on the principle that torque is exerted on a moving coil situated in the magnetic field of a permanent magnet. PMMC instruments provide accurate results for direct current (DC) measurements.Construction of PMMC InstrumentThe moving coil and the permanent magnet are the key components of a PMMC instrument
Edwiin
05/30/2025
Inquiry
Download
Experts Electrical is dedicated to serving the personnel in the global power industry.
Join Experts Electrical, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!