Properties of Superconductors

Electrical4u
03/14/2024

The superconducting material shows some extraordinary properties which make them very important for modern technology. The research is still going on to understand and utilise these extraordinary properties of superconductors in various fields of technology. Such properties of superconductors are listed below-

  1. Zero Electric Resistance (Infinite Conductivity)

  2. Meissner Effect: Expulsion of magnetic field

  3. Critical Temperature/Transition Temperature

  4. Critical Magnetic Field

  5. Persistent Currents

  6. Josephson Currents

  7. Critical Current

Zero Electric Resistance or Infinite Conductivity

In Superconducting state, the superconducting material shows the zero electric resistance (infinite conductivity). When the sample of a superconducting material is cooled below its critical temperature/transition temperature, its resistance reduces suddenly to zero. For example Mercury shows zero resistance below 4k.

Meissner Effect (Expulsion of Magnetic Field)

A Superconductor, when it is cooled below the critical temperature Tc), expel the magnetic field and doesn’t allow the magnetic field to penetrate inside it. This phenomenon in superconductors is called Meissner effect. The meissner effect is shown in figure below-
meissner effect

Critical Temperature/Transition Temperature

Critical temperature of a superconducting material is the temperature at which the materials changes from normal conducting state to superconducting state. This transition from normal conducting state (phase) to superconducting state (phase) is sudden / sharp and complete. The transition of mercury from normal conducting state to superconducting state is shown in figure below.

conducting sate to super conducting state

Critical Magnetic Field

The superconducting state / phase, of a superconducting material, breaks when the magnetic field (either external or produced by current flowing superconductor itself) increases beyond a certain value and sample starts behaving like an ordinary conductor. This certain value of magnetic field beyond which superconductor returns back to ordinary state, is called Critical magnetic field. The value of critical magnetic field depends on temperature. As the temperature (below the critical temperature) reduces the value of critical magnetic field increase.The variation in critical magnetic field with temperature is shown in figure below-
variation in critical magnetic field with the temperature

Persistent Current

If a ring made of a superconductor is placed in a magnetic field above its critical temperature, now cool the ring of superconductor below its critical temperature and now if we remove the magnetic field a current is induced in ring due to its self-inductance. By Lenz law the direction of this induced current is such that it opposes the change in flux passing through the ring. As the ring is in superconducting state (zero resistance), the current induced is ring will be continue to flow this current is called the persistent current. This persistent current produce a magnetic flux which makes the magnetic flux passing through the ring constant.

Josephson Current

If two superconductors are separated by a thin film of insulating material, which forms a low resistance junction, it is found that the cooper pairs (formed by phonon interaction) of electrons, can tunnel from one side of junction to the other side. The current, due to flow of such cooper pairs, is called Josephson Current.

Critical Current

When a current is passed through a conductor under superconducting state, a magnetic field is developed. If the current increase beyond certain value the magnetic field increased up to critical value at which conductor returns to its normal state. This value of current is called critical current.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Electrical4u

Electrical4U is dedicated to the teaching and sharing of all things related to electrical and electronics engineering.

What are earthing materials?
What are earthing materials?
Grounding MaterialsGrounding materials are conductive materials used for the grounding of electrical equipment and systems. Their primary function is to provide a low-impedance path to safely direct current into the earth, ensuring personnel safety, protecting equipment from overvoltage damage, and maintaining system stability. Below are some common types of grounding materials:1.Copper Characteristics: Copper is one of the most commonly used grounding materials due to its excellent conductivity
Encyclopedia
12/21/2024
What are the reasons for the excellent high - and - low temperature resistance of silicone rubber?
What are the reasons for the excellent high - and - low temperature resistance of silicone rubber?
Reasons for the Excellent High and Low-Temperature Resistance of Silicone RubberSilicone rubber (Silicone Rubber) is a polymer material primarily composed of siloxane (Si-O-Si) bonds. It exhibits outstanding resistance to both high and low temperatures, maintaining flexibility at extremely low temperatures and enduring prolonged exposure to high temperatures without significant aging or performance degradation. Below are the main reasons for the excellent high and low-temperature resistance of s
Encyclopedia
12/20/2024
What are the characteristics of silicone rubber in terms of electrical insulation?
What are the characteristics of silicone rubber in terms of electrical insulation?
Characteristics of Silicone Rubber in Electrical InsulationSilicone rubber (Silicone Rubber, SI) possesses several unique advantages that make it an essential material in electrical insulation applications, such as composite insulators, cable accessories, and seals. Below are the key features of silicone rubber in electrical insulation:1. Excellent Hydrophobicity Characteristics: Silicone rubber has inherent hydrophobic properties, which prevent water from adhering to its surface. Even in humid
Encyclopedia
12/19/2024
The difference between a Tesla coil and an induction furnace
The difference between a Tesla coil and an induction furnace
Differences Between a Tesla Coil and an Induction FurnaceAlthough both the Tesla coil and the induction furnace utilize electromagnetic principles, they differ significantly in design, working principles, and applications. Below is a detailed comparison of the two:1. Design and StructureTesla Coil:Basic Structure: A Tesla coil consists of a primary coil (Primary Coil) and a secondary coil (Secondary Coil), typically including a resonant capacitor, spark gap, and step-up transformer. The secondar
Encyclopedia
12/12/2024
Inquiry
Download
Experts Electrical is dedicated to serving the personnel in the global power industry.
Join Experts Electrical, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!