Mechanical Properties of Engineering Materials

Electrical4u
03/14/2024

To finalize the material for an engineering product or application, is it important to understand the mechanical properties of the material. The mechanical properties of a material are those which affect the mechanical strength and ability of a material to be molded in suitable shape. Some of the typical mechanical properties of a material include:

  • Strength

  • Toughness

  • Hardness

  • Hardenability

  • Brittleness

  • Malleability

  • Ductility

  • Creep and Slip

  • Resilience

  • Fatigue

Strength

It is the property of a material which opposes the deformation or breakdown of material in presence of external forces or load. Materials which we finalize for our engineering products, must have suitable mechanical strength to be capable to work under different mechanical forces or loads.

Toughness

It is the ability of a material to absorb the energy and gets plastically deformed without fracturing. Its numerical value is determined by the amount of energy per unit volume. Its unit is Joule/ m3. Value of toughness of a material can be determined by stress-strain characteristics of a material. For good toughness, materials should have good strength as well as ductility.

For example: brittle materials, having good strength but limited ductility are not tough enough. Conversely, materials having good ductility but low strength are also not tough enough. Therefore, to be tough, a material should be capable to withstand both high stress and strain.

Hardness

It is the ability of a material to resist to permanent shape change due to external stress. There are various measure of hardness – Scratch Hardness, Indentation Hardness and Rebound Hardness.

  1. Scratch Hardness
    Scratch Hardness is the ability of materials to the oppose the scratches to outer surface layer due to external force.

  2. Indentation Hardness
    It is the ability of materials to oppose the dent due to punch of external hard and sharp objects.

  3. Rebound Hardness
    Rebound hardness is also called as dynamic hardness. It is determined by the height of “bounce” of a diamond tipped hammer dropped from a fixed height on the material.

Hardenability

It is the ability of a material to attain the hardness by heat treatment processing. It is determined by the depth up to which the material becomes hard. The SI unit of hardenability is meter (similar to length). Hardenability of material is inversely proportional to the weld-ability of material.

Brittleness

Brittleness of a material indicates that how easily it gets fractured when it is subjected to a force or load. When a brittle material is subjected to a stress it observes very less energy and gets fractures without significant strain. Brittleness is converse to ductility of material. Brittleness of material is temperature dependent. Some metals which are ductile at normal temperature become brittle at low temperature.

Malleability

Malleability is a property of solid materials which indicates that how easily a material gets deformed under compressive stress. Malleability is often categorized by the ability of material to be formed in the form of a thin sheet by hammering or rolling. This mechanical property is an aspect of plasticity of material. Malleability of material is temperature dependent. With rise in temperature, the malleability of material increases.

Ductility

Ductility is a property of a solid material which indicates that how easily a material gets deformed under tensile stress. Ductility is often categorized by the ability of material to get stretched into a wire by pulling or drawing. This mechanical property is also an aspect of plasticity of material and is temperature dependent. With rise in temperature, the ductility of material increases.

Creep and Slip

Creep is the property of a material which indicates the tendency of material to move slowly and deform permanently under the influence of external mechanical stress. It results due to long time exposure to large external mechanical stress with in limit of yielding. Creep is more severe in material that are subjected to heat for long time. Slip in material is a plane with high density of atoms.

Resilience

Resilience is the ability of material to absorb the energy when it is deformed elastically by applying stress and release the energy when stress is removed. Proof resilience is defined as the maximum energy that can be absorbed without permanent deformation. The modulus of resilience is defined as the maximum energy that can be absorbed per unit volume without permanent deformation. It can be determined by integrating the stress-strain cure from zero to elastic limit. Its unit is joule/m3.

Fatigue

Fatigue is the weakening of material caused by the repeated loading of the material. When a material is subjected to cyclic loading, and loading greater than certain threshold value but much below the strength of material (ultimate tensile strength limit or yield stress limit), microscopic cracks begin to form at grain boundaries and interfaces. Eventually the crack reaches to a critical size. This crack propagates suddenly and the structure gets fractured. The shape of structure affects the fatigue very much. Square holes and sharp corners lead to elevated stresses where the fatigue crack initiates.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Electrical4u

Electrical4U is dedicated to the teaching and sharing of all things related to electrical and electronics engineering.

What are earthing materials?
What are earthing materials?
Grounding MaterialsGrounding materials are conductive materials used for the grounding of electrical equipment and systems. Their primary function is to provide a low-impedance path to safely direct current into the earth, ensuring personnel safety, protecting equipment from overvoltage damage, and maintaining system stability. Below are some common types of grounding materials:1.Copper Characteristics: Copper is one of the most commonly used grounding materials due to its excellent conductivity
Encyclopedia
12/21/2024
What are the reasons for the excellent high - and - low temperature resistance of silicone rubber?
What are the reasons for the excellent high - and - low temperature resistance of silicone rubber?
Reasons for the Excellent High and Low-Temperature Resistance of Silicone RubberSilicone rubber (Silicone Rubber) is a polymer material primarily composed of siloxane (Si-O-Si) bonds. It exhibits outstanding resistance to both high and low temperatures, maintaining flexibility at extremely low temperatures and enduring prolonged exposure to high temperatures without significant aging or performance degradation. Below are the main reasons for the excellent high and low-temperature resistance of s
Encyclopedia
12/20/2024
What are the characteristics of silicone rubber in terms of electrical insulation?
What are the characteristics of silicone rubber in terms of electrical insulation?
Characteristics of Silicone Rubber in Electrical InsulationSilicone rubber (Silicone Rubber, SI) possesses several unique advantages that make it an essential material in electrical insulation applications, such as composite insulators, cable accessories, and seals. Below are the key features of silicone rubber in electrical insulation:1. Excellent Hydrophobicity Characteristics: Silicone rubber has inherent hydrophobic properties, which prevent water from adhering to its surface. Even in humid
Encyclopedia
12/19/2024
The difference between a Tesla coil and an induction furnace
The difference between a Tesla coil and an induction furnace
Differences Between a Tesla Coil and an Induction FurnaceAlthough both the Tesla coil and the induction furnace utilize electromagnetic principles, they differ significantly in design, working principles, and applications. Below is a detailed comparison of the two:1. Design and StructureTesla Coil:Basic Structure: A Tesla coil consists of a primary coil (Primary Coil) and a secondary coil (Secondary Coil), typically including a resonant capacitor, spark gap, and step-up transformer. The secondar
Encyclopedia
12/12/2024
Inquiry
Download
Experts Electrical is dedicated to serving the personnel in the global power industry.
Join Experts Electrical, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!