How do electricity electric current electrons move in wires, cables, and metals?

Encyclopedia
11/19/2024

The movement of current in wires, cables, and metals is a fundamental physical phenomenon that involves the motion of electrons and the properties of conductive materials. Here is a detailed explanation of this process:

1. Concept of Free Electrons

In metals and conductive materials, there are a large number of free electrons. These free electrons are not bound to atomic nuclei and can move freely within the material. The presence of free electrons is the primary reason why metals are good conductors of electricity.

2. Effect of an External Electric Field

When a voltage (i.e., an external electric field) is applied across a conductive material, the free electrons are influenced by the electric field and begin to move directionally. The direction of the electric field determines the direction of electron movement. Typically, the electric field points from the positive terminal to the negative terminal, and electrons move in the opposite direction, from the negative terminal to the positive terminal.

3. Directed Movement of Electrons

Under the influence of the electric field, free electrons start to move directionally, forming a current. The direction of the current is defined as the direction of positive charge movement, which is opposite to the actual direction of electron movement. Therefore, when we say current flows from positive to negative, it actually means that electrons are moving from negative to positive.

4. Interaction with the Lattice

During their movement, free electrons collide with the lattice (atomic arrangement) of the material. These collisions scatter the electrons, changing their direction of movement and reducing their average velocity. This scattering effect is one of the sources of resistance.

5. Current Density

Current density (J) is the current per unit cross-sectional area and can be expressed by the formula:

J= I/A

where I is the current and A is the cross-sectional area of the conductor.

6. Ohm's Law

Ohm's Law describes the relationship between current, voltage, and resistance:

V=IR

where V is the voltage, I is the current, and R is the resistance.

7. Properties of Conductive Materials

Different conductive materials have varying conductive properties, which depend on their electronic structure and lattice structure. For example, copper and silver are excellent conductors because they have a large number of free electrons and low resistivity.

8. Effect of Temperature

Temperature has a significant impact on conductivity. Generally, as temperature increases, lattice vibrations in the material intensify, increasing the frequency of electron-lattice collisions and leading to higher resistance. This is why the resistance of conductors increases at higher temperatures.

9. Superconductivity

Under certain specific conditions, some materials can enter a superconducting state, where resistance drops to zero, allowing current to flow without any loss. Superconductivity typically occurs at very low temperatures, but recent research has discovered some high-temperature superconducting materials.

Summary

The movement of current in wires, cables, and metals is driven by the directed movement of free electrons under the influence of an external electric field. Electron interactions with the material's lattice cause resistance. The properties of conductive materials, temperature, and other factors all influence the efficiency of current transmission. Understanding these basic principles helps in better designing and applying conductive materials and circuits.

Encyclopedia

The Electricity Encyclopedia is dedicated to accelerating the dissemination and application of electricity knowledge and adding impetus to the development and innovation of the electricity industry.

Load Frequency Control (LFC) & Turbine Governor Control (TGC) in Power System
Load Frequency Control (LFC) & Turbine Governor Control (TGC) in Power System
Brief Introduction to Thermal Generating UnitsElectricity generation relies on both renewable and non - renewable energy resources. Thermal generating units represent a conventional approach to power production. In these units, fuels such as coal, nuclear energy, natural gas, biofuel, and biogas are combusted within a boiler.The boiler of a generating unit is an extremely complex system. In its simplest conception, it can be visualized as a chamber whose walls are lined with pipes, through which
Edwiin
06/06/2025
Why 3-Phase Power? Why Not 6, 12 or More for Power Transmission?
Why 3-Phase Power? Why Not 6, 12 or More for Power Transmission?
It is well-known that single-phase and three-phase systems are the most prevalent configurations for power transmission, distribution, and end-use applications. While both serve as fundamental power supply frameworks, three-phase systems offer distinct advantages over their single-phase counterparts.Notably, multi-phase systems (such as 6-phase, 12-phase, etc.) find specific applications in power electronics—particularly in rectifier circuits and variable frequency drives (VFDs)—wher
Edwiin
06/05/2025
How Many Poles and Towers are Situated Within a 1-km Span?
How Many Poles and Towers are Situated Within a 1-km Span?
The number of distribution poles and transmission towers within a 1-kilometer stretch of overhead lines varies significantly based on multiple factors, including voltage level, power line type, supporting structure, geographical location, local regulations, and specific grid requirements.In urban areas, distribution utility poles are typically positioned at closer intervals, while in rural regions, they are spaced farther apart. Additionally, the use of taller structures for higher-voltage trans
Edwiin
06/05/2025
Synchronizing Power and Torque Coefficient
Synchronizing Power and Torque Coefficient
Definition of Synchronizing PowerSynchronizing power, denoted as Psyn, is defined as the variation in synchronous powerP with respect to changes in the load angle δ. Also referred to as thestiffness of coupling,stability factor, orrigidity factor, it quantifies a synchronous machine’s (generator or motor) inherent tendency to maintain synchronism when connected to infinite busbars.Principle of Synchronism MaintenanceConsider a synchronous generator transmitting a steady power Pa at a
Edwiin
06/04/2025
Inquiry
Download
Experts Electrical is dedicated to serving the personnel in the global power industry.
Join Experts Electrical, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!