Why do electrons continue to move in the same direction in an electric circuit with a potential difference?

Encyclopedia
10/30/2024

In a circuit with a potential difference, electrons move in the same direction due to the influence of the electric field force. When the power supply is turned on, a large amount of negative charge (electrons) accumulates at the negative pole of the power supply, while a large amount of positive charge accumulates at the positive pole. These charges are separated within the power supply due to chemical reactions or other energy conversion processes, resulting in a potential difference, or voltage, between the two ends of the power supply.

When the circuit is closed, the free electrons in the conductor are subjected to the force of the electric field and begin to move from the negative pole of the power supply to the positive pole. This electric field force is generated by the potential difference between the two ends of the power supply, and it drives the electrons to move along the conductor in a specific direction, that is, from low potential (negative pole) to high potential (positive pole). Although the electric field inside the conductor may not be completely uniform, it can still effectively guide the electrons to move in the same direction.

In addition, the free electrons in conductors, under the action of electric field force, although their actual motion path may be tortuous, due to a large number of electrons subjected to forces in the same direction, they exhibit a phenomenon of directional movement as a whole. Although the speed of this directional movement is very slow relative to the speed of light, it is sufficient to form the current we observe.

In summary, the reason why electrons move in the same direction within a circuit with a potential difference is due to the electric field force provided by the power supply. This force prompts free electrons to overcome internal resistances, such as the attraction of atomic nuclei and collisions with other electrons, and move unidirectionally along the conductor.

Encyclopedia

The Electricity Encyclopedia is dedicated to accelerating the dissemination and application of electricity knowledge and adding impetus to the development and innovation of the electricity industry.

Load Frequency Control (LFC) & Turbine Governor Control (TGC) in Power System
Load Frequency Control (LFC) & Turbine Governor Control (TGC) in Power System
Brief Introduction to Thermal Generating UnitsElectricity generation relies on both renewable and non - renewable energy resources. Thermal generating units represent a conventional approach to power production. In these units, fuels such as coal, nuclear energy, natural gas, biofuel, and biogas are combusted within a boiler.The boiler of a generating unit is an extremely complex system. In its simplest conception, it can be visualized as a chamber whose walls are lined with pipes, through which
Edwiin
06/06/2025
Why 3-Phase Power? Why Not 6, 12 or More for Power Transmission?
Why 3-Phase Power? Why Not 6, 12 or More for Power Transmission?
It is well-known that single-phase and three-phase systems are the most prevalent configurations for power transmission, distribution, and end-use applications. While both serve as fundamental power supply frameworks, three-phase systems offer distinct advantages over their single-phase counterparts.Notably, multi-phase systems (such as 6-phase, 12-phase, etc.) find specific applications in power electronics—particularly in rectifier circuits and variable frequency drives (VFDs)—wher
Edwiin
06/05/2025
How Many Poles and Towers are Situated Within a 1-km Span?
How Many Poles and Towers are Situated Within a 1-km Span?
The number of distribution poles and transmission towers within a 1-kilometer stretch of overhead lines varies significantly based on multiple factors, including voltage level, power line type, supporting structure, geographical location, local regulations, and specific grid requirements.In urban areas, distribution utility poles are typically positioned at closer intervals, while in rural regions, they are spaced farther apart. Additionally, the use of taller structures for higher-voltage trans
Edwiin
06/05/2025
Synchronizing Power and Torque Coefficient
Synchronizing Power and Torque Coefficient
Definition of Synchronizing PowerSynchronizing power, denoted as Psyn, is defined as the variation in synchronous powerP with respect to changes in the load angle δ. Also referred to as thestiffness of coupling,stability factor, orrigidity factor, it quantifies a synchronous machine’s (generator or motor) inherent tendency to maintain synchronism when connected to infinite busbars.Principle of Synchronism MaintenanceConsider a synchronous generator transmitting a steady power Pa at a
Edwiin
06/04/2025
Inquiry
Download
Experts Electrical is dedicated to serving the personnel in the global power industry.
Join Experts Electrical, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!