Vector Algebra | Vector Diagram

Electrical4u
03/12/2024

Before studying electrical engineering it is essential to know that angular relation between mainly voltage and current in a system. For understanding the relation between voltage and we should first know definition of vector and go through vector algebra and vector diagram.

Definition of Vector

There are some quantities which have both magnitude and as well as their direction of action. This type of quantities is called vector quantity. This is how one can make basic definition of vector in very few words. The most basic concept of a vector is that, it is a representation of these type of quantities in both magnitude and direction. Whenever we represent any quantity it may have some direction of action. Suppose if we say, a force of 5 N, it does not complete the picture.
We should always have to say the force in which direction, i.e. that 5 N force is in upward, downward or in any other directions. So the vector quantity must be represented with the magnetite as well as its direction. The direction of any quantity can be represented by measuring the angle formed by the direction of the quantity and a reference axis.
vector diagram
Here in this vector diagram the vector OB has a magnitude of |Z| at an angle θ with reference axis ox. This may be resolved into two components at right angle to each other, say these are
The conventional method of representing vector

Vector Algebra

Now we will discuss about vector algebra. For different calcuilation, vector must be expressed algebraically. In the vector diagram the vector Z is the resultant of vectorically adding its components X and Y.
This vector may be written in vector algebra as

Where, j indicates that the component Y is in perpendicular to component X. The x axis in the vector diagram is known as ‘real’ or ‘in-phase’ axis and the vertical y axis is called ‘imaginary’ or ‘quadrature’ axis. The symbol ‘j’ which is associated with the quadrature component Y, may be considered as an operator which rotates a vector anticlockwise through 90o. If a vector has to be rotated anticlockwise through 180o then the operator j has to perform its function twice and since the vector has reversed its sense then j.j or j2 = − 1

Which implies, j = √ − 1

So we have seen that a vector quantity can be represented in following different forms,

Relation between rectangular and complex form of a vector

As per the vector diagram shown on this page. The magnitude of vector Z is

From these two equations, we get,

Putting these values of X and Y, in complex form of Z, we get,

The value of above expression is known as trigonometrical form of vector. Again we know that, cosθ and sinθ can be represented in exponential form as follows

If we put these above exponential form of sinθ and cosθ in the equation Z = |Z|(cosθ + jsinθ) we get,

⇒ Z = |Z|e
This is the exponential form of vector.
Therefore from all above expressions of vector algebra and vector diagrams, it can be concluded that a vector quantity can be represented as total four basic form as listed below


Source: Electrical4u.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Electrical4u

Electrical4U is dedicated to the teaching and sharing of all things related to electrical and electronics engineering.

What is a Pure Resistive AC Circuit?
What is a Pure Resistive AC Circuit?
Pure Resistive AC CircuitA circuit containing only a pure resistanceR(in ohms) in an AC system is defined as a Pure Resistive AC Circuit, devoid of inductance and capacitance. Alternating current and voltage in such a circuit oscillate bidirectionally, generating a sine wave (sinusoidal waveform). In this configuration, power is dissipated by the resistor, with voltage and current in perfect phase—both reaching their peak values simultaneously. As a passive component, the resistor neither
Edwiin
06/02/2025
What is a Pure Capacitor Circuit?
What is a Pure Capacitor Circuit?
Pure Capacitor CircuitA circuit comprising only a pure capacitor with capacitanceC(measured in farads) is termed a Pure Capacitor Circuit. Capacitors store electrical energy within an electric field, a characteristic known ascapacitance(alternatively referred to as a "condenser"). Structurally, a capacitor consists of two conductive plates separated by a dielectric medium—common dielectric materials include glass, paper, mica, and oxide layers. In an ideal AC capacitor circuit, the current
Edwiin
06/02/2025
Resistance Switching in a Circuit Breaker
Resistance Switching in a Circuit Breaker
Resistance SwitchingResistance switching refers to the practice of connecting a fixed resistor in parallel with the contact gap or arc of a circuit breaker. This technique is applied in circuit breakers with high post-arc resistance in the contact space, primarily to mitigate re-striking voltages and transient voltage surges.Severe voltage fluctuations in power systems arise from two main scenarios: interrupting low-magnitude inductive currents and breaking capacitive currents. Such overvoltages
Edwiin
05/23/2025
What is Biot Savart Law?
What is Biot Savart Law?
The Biot-Savart Law is employed to determine the magnetic field intensity dHnear a current-carrying conductor. In other words, it describes the relationship between the magnetic field intensity generated by a source current element. This law was formulated in 1820 by Jean-Baptiste Biot and Félix Savart. For a straight wire, the direction of the magnetic field adheres to the right-hand rule. The Biot-Savart Law is also referred to as Laplace’s law or Ampère’s law.Conside
Edwiin
05/20/2025
Inquiry
Download
Experts Electrical is dedicated to serving the personnel in the global power industry.
Join Experts Electrical, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!