How do you determine the voltage of a series wound DC motor based on the number of turns on the stator?

Encyclopedia
10/19/2024

Relation between stator winding and voltage

In a DC motor, the number of turns in the stator winding (also known as the armature winding) directly affects the induced electromotive force it generates. The effective value of the induced electromotive force per phase of the stator winding 
E1 can be calculated using the following formula:

E1 = 4.44 K1 f1 N1 Φ

Among them:


  • E1 is the effective value of the induced electromotive force per phase of the stator winding.


  • K1 is the winding coefficient of the stator winding, which depends on the structure of the winding.


  • f1 is the frequency of the induced electromotive force in the stator winding, which is equal to the frequency of the power supply.


  • N1 is the number of turns of wire in series for each phase winding of the stator.

  • Φ Φ is the pole-pair magnetic flux of the rotating magnetic field, i.e., the maximum value (in webers) of the alternating magnetic flux that passes through the stator windings.

The method to determine the voltage

According to the above formula, we can infer that to determine the voltage of a wound direct current motor, we need to know the following parameters:

  • Stator winding turns
    N1

  • Winding Factor K1

  • Power Frequencyf1

  • Magnetic Flux (Φ)

Once these parameters are known, the induced electromotive force E1 can be calculated using the above formula, which in turn determines the voltage of the motor.

Considerations in practical applications

In practical applications, determining the voltage for a wound-rotor DC motor also needs to consider other factors such as the design requirements of the motor, load characteristics, and overall system performance. Additionally, it is necessary to ensure that the calculated voltage falls within the safe operating range of the motor.

Sample Calculation

Assume we have a DC motor with a stator winding of 38 turns, winding coefficientK1 of 0.9, power frequency 
f1 of 50 Hz, and flux  Φ Φ of 0.001 Weber. Then, we can calculate the induced electromotive force 
E1 as follows:

E1 = 4.44 × 0.9 × 50 × 38 × 0.001 = 7.22 V

Therefore, the voltage of this motor is approximately 7.22V.

Conclusion

Through the above formula and steps, it is possible to determine the voltage of a shunt-wound DC motor based on the number of turns in the stator winding and other relevant parameters. However, in practical applications, it is also necessary to take into account other factors to ensure the normal operation and safety of the motor.


Encyclopedia

The Electricity Encyclopedia is dedicated to accelerating the dissemination and application of electricity knowledge and adding impetus to the development and innovation of the electricity industry.

Analysis of the Technical Characteristics of Online Monitoring for Medium-Voltage Switchgear Status
Analysis of the Technical Characteristics of Online Monitoring for Medium-Voltage Switchgear Status
With the increasing complexity of power system operation environment and the deepening of power system reform, traditional power grids are accelerating the transformation to smart grids. The goal of equipment condition-based maintenance is achieved through real-time perception of equipment status by new sensors, reliable communication via modern network technology, and effective monitoring by background expert systems.I. Analysis of Condition-based Maintenance StrategyCondition-based Maintenance
Oliver Watts
06/11/2025
What is the current application status and development trend of medium-voltage switchgear?
What is the current application status and development trend of medium-voltage switchgear?
With the accelerated automation of power equipment, various medium-voltage switchgear have emerged in the market. Classified by insulation media, they are mainly divided into air-insulated, SF₆ gas-insulated and solid-insulated types, each with its own advantages and disadvantages: solid insulation offers good performance but poor environmental friendliness, SF₆ features excellent arc extinguishing capability but is a greenhouse gas, and air insulation has high cost-performance but larger volume
Echo
06/11/2025
What components make up the design of medium-voltage ring network distribution switchgear?
What components make up the design of medium-voltage ring network distribution switchgear?
As an expert who has been deeply engaged in the field of power system design for many years, I have always paid attention to the technological evolution and application practice of medium-voltage ring main distribution equipment. As a core electrical device in the secondary distribution link of the power system, the design and performance of such equipment are directly related to the safe and stable operation of the power supply network. The following is a professional analysis of the key design
Dyson
06/11/2025
What aspects should be paid attention to when installing medium-voltage switch cabinets during the initial stage of subway operation?
What aspects should be paid attention to when installing medium-voltage switch cabinets during the initial stage of subway operation?
1. Statistics on Common Faults of Medium-Voltage Switchgear in the Early Operation StageAs project participants, we found during the early operation of a new metro line: 21 sets of power supply equipment were put into use, with a total of 266 accident phenomena in the first year. Among them, 77 faults occurred in medium-voltage switchgear, accounting for 28.9%—significantly higher than faults in other equipment. Statistical analysis shows that major fault types include: protection device s
Felix Spark
06/11/2025
Inquiry
Download
Experts Electrical is dedicated to serving the personnel in the global power industry.
Join Experts Electrical, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!